If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+24x-23=0
a = 4; b = 24; c = -23;
Δ = b2-4ac
Δ = 242-4·4·(-23)
Δ = 944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{944}=\sqrt{16*59}=\sqrt{16}*\sqrt{59}=4\sqrt{59}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{59}}{2*4}=\frac{-24-4\sqrt{59}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{59}}{2*4}=\frac{-24+4\sqrt{59}}{8} $
| p=L.W | | 6^(x-5)=7 | | 5(4x-2)=11 | | 1/4x-2=16 | | x+5/3-3=6 | | (1/4)x-2=16 | | 10(m-3)=90 | | 14z=-14 | | 3x-6=-14+2x | | 5s/4=15 | | 6x+7x+10=36 | | 5(3x+2)+4)+2x=67 | | x-3/2+2=6 | | 1/3x+9=26/3 | | x+9=4x+21 | | 11x^-2-35x^-1+6=0 | | 4x+7=3x+7−3(2x−5)=15−6x | | 4(h+6))=3(2h+4) | | 1/11(2x+4)+10=11 | | 6=15w+75w-4 | | 3q−2=7 | | 2+8(7+x)=2 | | k/3-3=11 | | 10x4-5x4=20 | | 6x+216=4x=188 | | 2x/5-8/x=0 | | j4+ 8=12 | | p+(+5)=6 | | 10u−5u=20 | | F(n)=7n-3 | | 7.x=18.3-4.8 | | -6x+2=-3x-2 |